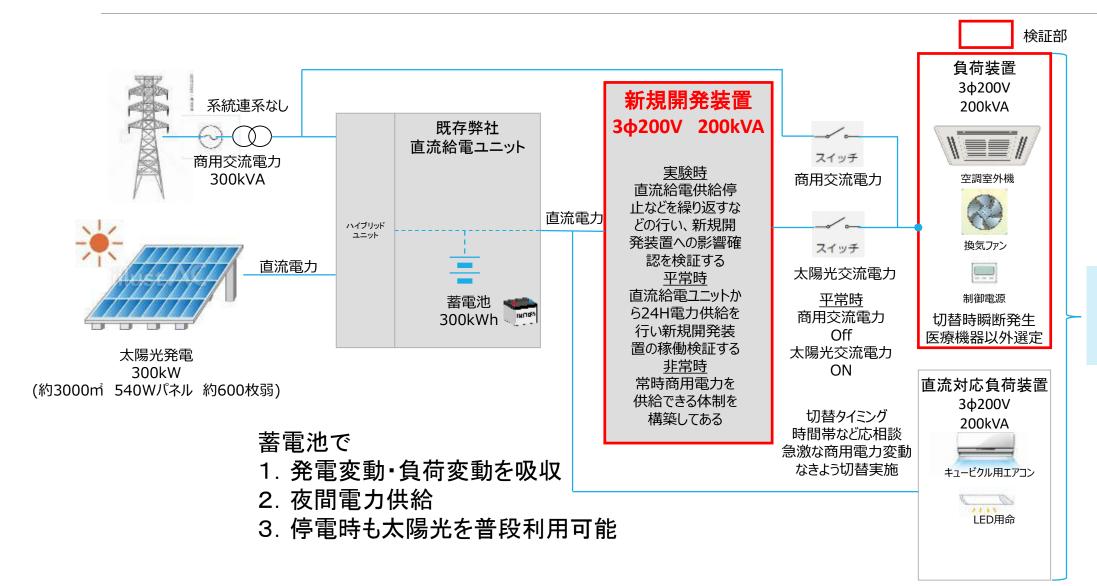
充放電技術で世界を変える TOHSEI

脱炭素と停電時対応の両立できるシステムを提供する

新規開発装置概要 Electric Generator Power Supply(EGP)

現在の非常用発電機は、非常しか使用しない。同等なシステムを構築しながら、再生可能エネルギーを元に 脱炭素とBCPを兼ね備えるシステムを構築します。


太陽光発電、蓄電池、系統電力を最適に組合せ発電機を駆動して3φ200V 200kVA出力の内燃機関を使用しない(CO₂を排出しない)発電機を開発します。

また、余剰電力で大型蓄電池に電気を貯め、再生可能エネルギーを余すことなく使用します。

TOHSEI CONFIDENTIAL

NEDO開発品設置システム構成図

負荷 補器用電力/事務所電力

> 太陽光パネル 屋根or平置き

事業者向け事例

▼台風15号(2019年9月):約12日間

▼台風19号(2019年10月):約4日間

資源エネルギー庁ホームページより引用

陸上養殖事業者向け

24時間稼働が必須+脱炭素ブランド要求増大排水の有効活用で更なる脱炭素

植物工場事業者向け

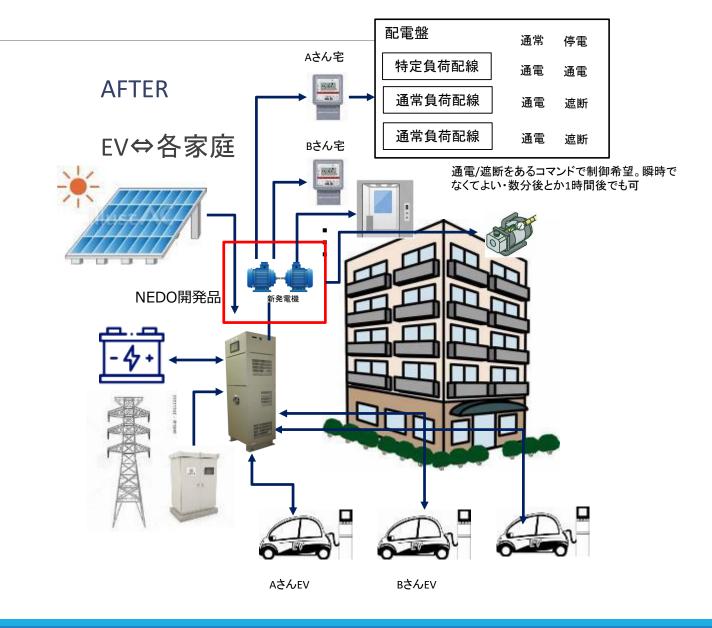
24時間稼働が必須+直流照明で更なる脱炭素

食品製造事業者向け

停電時の冷凍・冷蔵損害軽減 廃棄物/排水の有効活用で更なる脱炭素

冷蔵冷凍倉庫事業者向け

停電時の冷凍・冷蔵損害軽減+物流脱炭素貢献 倉庫内直流LED照明化で更なる脱炭素

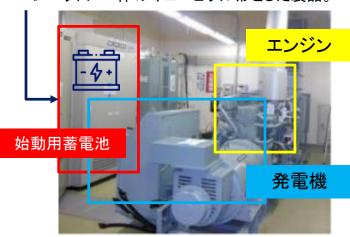

物流倉庫事業者向け 物流脱炭素貢献/BCP対応 倉庫内直流LED照明化で更なる脱炭素

集合住宅EV応用例

BEFORE

EV充電するのみ/売電するだけ

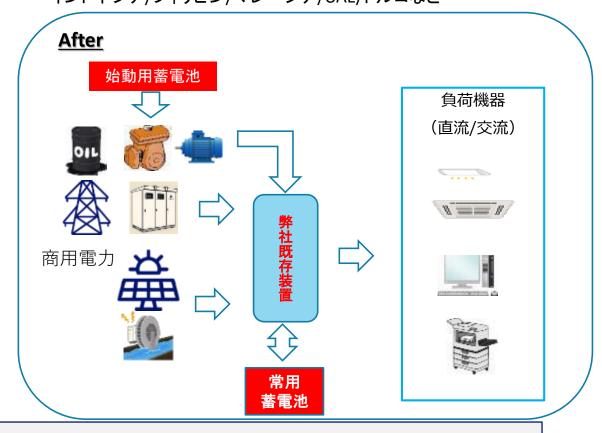
エネルギーミックス発電システム応用例


2021年申請東京整流器NEDOシステム 系統連系なし スイッチ 直流給電ユニット 整流部 商用交流電力 商用交流電力 負荷装置 新規開発装置 300kVA 3φ200V ハイブリッド 3ф200V 200kVA ユニット 200kVA スイッチ 直流電力 太陽光交流電力 太陽光発電 蓄電池 🕶 300kW 300kWh 直流電力 直流対応負荷装置 3φ200V 200kVA SOFC 20kW キュービクル用エアコン 直流給電ユニット SOFC 整流部 20kW 整流前交流電力 LED用命 バイナリ発電 ハイブリッド 2kW ユニット 整流前交流電力 小型水力発電 蓄電池 1kW 300kWh? 工場排水 整流前交流電力 風力発電 ?kW

当社ビジネスモデル Before After

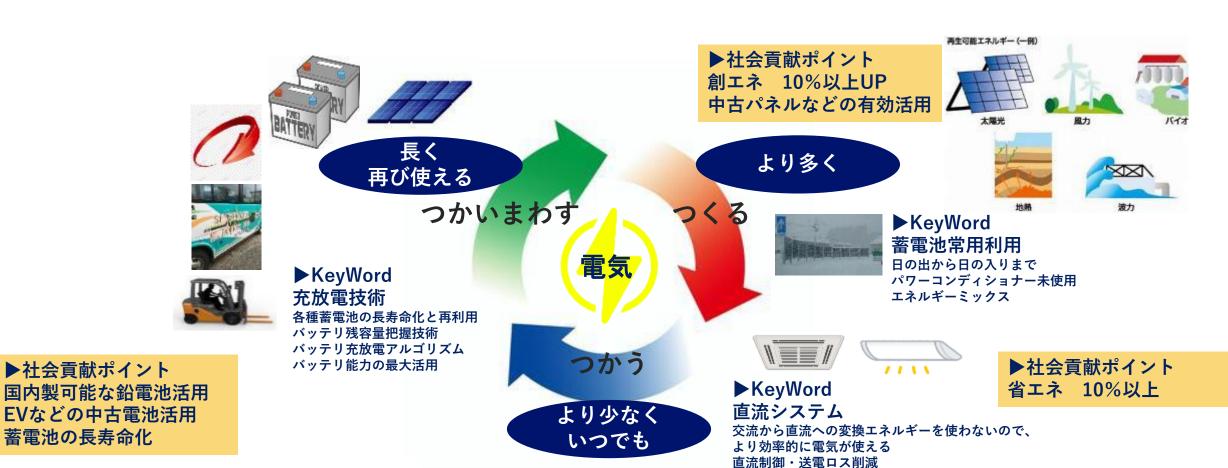
■現状ビジネス

自家発始動用蓄電池設備


自家発始動用蓄電池設備は、消防庁告示の技術基準に 準拠し、高率放電用蓄電池と高性能な全自動整流器とを コンパクトに一体のキュービクル形とした製品。

1分急速充電 15分稼働

商社経由海外納品 納入国例) インドネシア/フィリピン/マレーシア/UAE/トルコなど


充電一筋50年

- ・ 製鉄所自動搬送車充電器高シェア(27年前1号機納入)
- 防衛関連への多数納入実績あり
- 鉛電池へも急速充電可能

高いバッテリ再利用技術

• 30年近い実績によるバッテリ調整技術保有独自検査調整装置/東京メトロなどへ納入(回生エネルギー用)

東京整流器株式会社の『 直流整流器TNPL 』を活用した、電気をより多く作り、効率よく使うエネルギーマネジメントのご提案です。さらに既存の資産(太陽光パネル・蓄電池等)を使い回すことも可能です。

8

RE100+防災拠点型道の駅モデル

再生エネルギーで72時間バックアップ実現

2015年から稼働

通常時

省エネ時

0.1%出力 超省エネ時

国交省防災道の駅39拠点の一つ

太陽光パネル 合計20kW 屋根置き 10kW 垂直置き 10kW・・・雪の日でも発電 蓄電池 30kWh LED照明 約300灯 通信系1.5kW

リユースバッテリ活用

再リユース

● 災害時は災害モードで72時間以上、 非常用電源として活用

通常時は太陽光と 蓄電池を有効活用し、 ゼロエネルギー化を推進

今後の展開

エネルギーミックスで電力使用量アップ

垂直パネルで雪の日でも発電

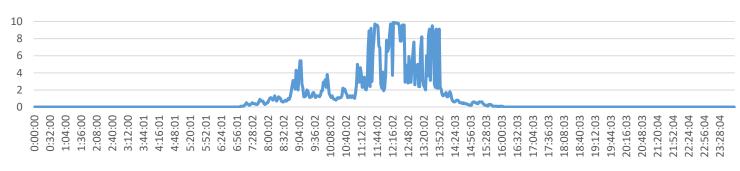
道の駅しちのへ(青森県)の垂直発電/屋根発電データ 自家消費型

2020年度	垂直設置太陽光発電 (kWh)	屋根設置太陽光発電 (kWh)	日照時間(時間)
1月	519.2	167.7	113.6
2月	584.7	244.7	120.9
3月	615.2	596.1	178.8
4月	541.6	572.6	142.7
5月	569.1	603.5	187.7
6月	521.0	597.9	184.7
7月	389.1	458.7	79.6
8月	525.4	533.6	162.3
9月	452.1	396.9	135.7
10月	478.3	382.3	126.3
11月	593.3	377.4	138.8
12月	520.3	159.8	111.0
年間合計	6309.3	5091.2	1682.1
発電比率	55.3%	44.7%	

道の駅しちのへ(青森県)の直流給電発電データ 垂直設置 定格10kW

2020/12/30雪 7.7kWh/日

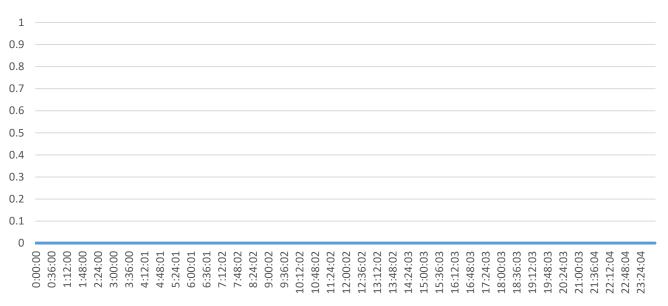
太陽光パネル10kW



2020/12/31曇りのち晴れ 28.7kWh/日

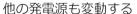
垂直設置太陽光発電(kW)2020/12/31

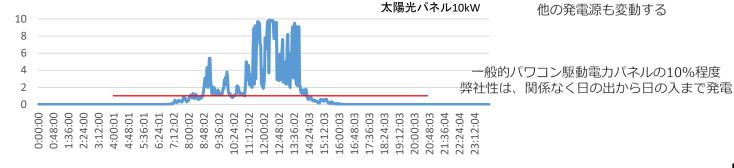
道の駅しちのへ(青森県)の直流給電発電データ 屋根設置 定格10kW


晴れていても積雪のある場合は発電は出来ない 道の駅しちのへは平均約1か月~2か月は発電ゼロとなる ため発電可能期間が10か月程度となる。

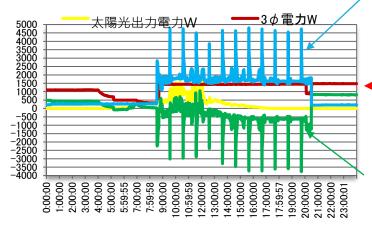
太陽光パネル設置場所

2020/12/31曇りのち晴れ 0kWh/日




蓄電池で電力変動対応(発電側/負荷側)

発電側


垂直設置太陽光発電(kW)2020/12/31

調整役が必要

負荷変動が大きい

商用電カー定・・・太陽光など を増やせば、ゼロも可能

負荷変動を蓄電池が±0へ

一般的には、商用電力が調整役 だから、 停電時に使用できず

> 当社は、 蓄電池が調整役

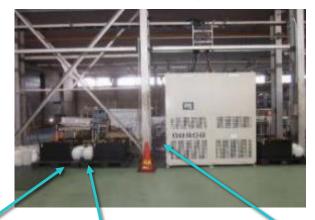
長く、蓄電池を利用するには、充放電技術が肝 エネルギーミックスも容易

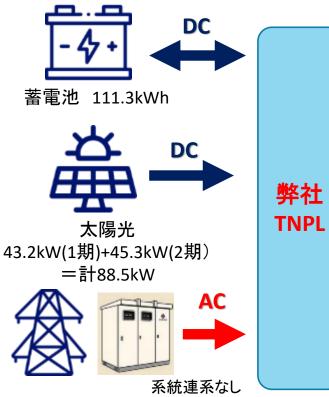
負荷側

基礎技術設置事例

静岡県牧之原市(N社組立工場事例···見学可能)

平置きの太陽光パネル


1期工事 出力60kW フォークリフト 自社使用中古蓄電池の有効活用


1期工事

直流給電の自営線

空調やLED照明の建物間電力融通 (直流給電)

補完電力 晴天時、ほぼ商用電力ゼロ 太陽光 43.2kW(1期)+45.3kW(2期)=計88.5kW 蓄電池 111.3kWh 空調 8馬力 8ユニット 照明 196灯 3kVA交流3系統

DC

直流装置

照明 196灯

W=="//

空調 8馬力 8台

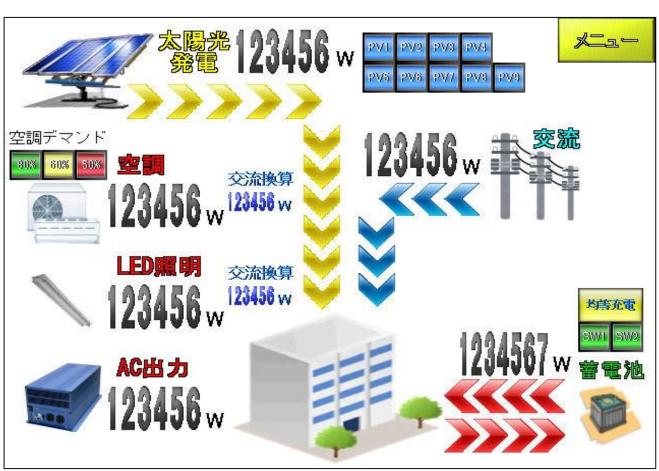
交流装置

3kVA交流3系統

自動補水装置

2期増設工事の60kW装置

2期工事


弊社電力監視システム

負荷機器使用電力管理

照明管理(0~100% 0.1%単位

電力計		3		PVI
PVI電力(W)	123456	0 中亚流電力(w)	123456	
PV2電力(w)	123456	空額1電力(w)	123456	
PV3電力(W)	123456	空觀/電力(W)	123456	
BV4電力(w)	123456	*	123456	(M)
PVS電力(w)	123456	*	123456	(m)
Pv6電力(w)	123456	空調 容計載力(w)	123456	
PV7電力(w)	123456	LED電力(w)	123456	PV9
PVs電力(w)	123456	平均調光率(%)	1234.5	P0/9
Pv9電力(w)	123456	SAI 果力(w)	123456	12
大学 会計量力(w)	123456	SM2電力(w)	123456	
電池I電力(W)	123456	インパーター 電力(w)	123456	>>
電池2電力(W)	123456	+	123456	<<

蓄電池残容量も管理